

Wirt-Gast-Systeme

Deutsche Ausgabe: DOI: 10.1002/ange.201509963 Internationale Ausgabe: DOI: 10.1002/anie.201509963

Corannulen komprimiert in einem molekularen Käfig

Bernd M. Schmidt, Takafumi Osuga, Tomohisa Sawada, Manabu Hoshino und Makoto Fujita*

Abstract: Durch Selbstorganisation erhaltene Käfigverbindungen können als molekulare Pressen genutzt werden. Die Komplexierung der schalenförmigen Verbindung Corannulen $(C_{20}H_{10})$ im Inneren des Käfigs erfolgt unter erheblicher Planarisierung des Gasts. Dies wird anhand von zwei Beispielen, der Einlagerung von Corannulen mit Naphthalindiimid und der Einlagerung von zwei Monobromcorannulenen, demonstriert. Die Änderung der Struktur wurde eindeutig durch Einkristallröntgenstrukturanalyse nachgewiesen.

Selbstorganisierte Koordinationskäfige können z. B. genutzt werden, um maßgeschneiderte Anordnungen von Molekülen zu realisieren^[1] oder Metallionen in ihrem Inneren zu binden.^[2] Die Größe und Form des Innenraums spielt dabei bezüglich des Bindungsmodus und der Anordnung der Gäste eine große Rolle. Quadratische Koordinationskäfige wie 1 binden sowohl flache organische Moleküle als auch flache Metallkomplexe effektiv, mit der Möglichkeit, programmierbare Anordnungen zu realisieren.^[1] Hier zeigen wir, dass Corannulen (2), ein schalenförmiger aromatischer Kohlenwasserstoff,^[3] seine Form der des Käfigs 1 bei Komplexierung anpasst (Abbildung 1). Corannulen **2a** wurde zusammen mit

Abbildung 1. a) Selbstorganisierter molekularer Käfig 1; b) Strukturformeln der Gäste Corannulen 2 und Naphthalindiimid 3.

dem elektronenarmen Naphthalindiimid **3** verkapselt, während die Verkapselung von Bromcorannulen $2b^{[3]}$ unter Bildung eines Homodimers erfolgt. In beiden Fällen werden die

Corannulene 2 im Käfiginneren erheblich abgeflacht. Vor kurzem haben Siegel und Stoddart über die Verringerung der Inversionsbarriere der Schaleninversion von Corannulen 2a in einem Makrocyclus berichtet. Die Strukturänderung von 2a war dabei jedoch insignifikant.^[4]

Anfängliche Versuche, nur Corannulen (**2a**) als Templat für die Mehrkomponentenreaktion zu **1** zu nutzen, ergaben Mischungen verschiedener Produkte.^[5] Daher richteten wir unsere Aufmerksamkeit auf die paarweise Verkapselung, die sich in der Vergangenheit als effektive Methode zur Einlagerung eines aromatischen Donor-Akzeptor-Paares herausgestellt hat.^[6] Entsprechend wurde ein Überschuss der wasserunlöslichen Gäste (**2a** und **3**, 20 µmol) in einer wässrigen Lösung von Tris(4-pyridyl)-2,4,6-triazin (**4**, 20 µmol), 2,2',6,6'-Tetramethyl-4,4'-bipyridin (**5**, 30 µmol) und (en)Pd(NO₃)₂ (**6**, 60 µmol) bei 100 °C für 2 h gerührt.

Nach Abtrennung des Gastüberschusses durch Filtration zeigt das ¹H-NMR-Spektrum Signale, die der Einschlussverbindung $1 \cdot (2a \cdot 3)$ entsprechen (Abbildung 2). Die Protonen-

Abbildung 2. a) Bildung von $1 \cdot (2a \cdot 3)$ nach Erhitzen auf 100°C für 2 h in H₂O; b) ¹H-NMR-Spektrum (500 MHz, 27°C) von $1 \cdot (2a \cdot 3)$ in D₂O. Resonanzen des Wirtes sind mit einem grauen Punkt gekennzeichnet.

resonanzen der Gäste sind hierbei, durch den abschirmenden Effekt des Triazin-Liganden und die Wechselwirkung der beiden Gäste miteinander, auffallend stark hochfeldverschoben: Für **2a** ist $\delta = 6.24$ ($\Delta \delta = -1.02$); für **3** ist $\delta = 6.01$ ($\Delta \delta = -2.74$) ppm.^[7] Das Verhältnis von Wirt zu Gast wurde durch Integration der NMR-Signale zu 1:2 bestimmt. Diffusionsaufgelöste NMR-Spektroskopie (DOSY) stützt die Annahme, dass ein großer Wirt-Gast-Komplex erhalten wird, da alle beobachteten Resonanzen den gleichen Diffusionskoeffizienten aufweisen ($D = 1.6 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$; siehe dazu Abbildung S2 in den Hintergrundinformationen).

Geeignete Einkristalle für die Röntgenstrukturanalyse konnten durch langsames Eindampfen einer wässrigen Lösung von **1**·(**2a**·**3**) bei Raumtemperatur erhalten werden.

 ^[*] Dr. B. M. Schmidt, Dr. T. Osuga, Dr. T. Sawada, Dr. M. Hoshino, Prof. Dr. M. Fujita
 Department of Applied Chemistry, School of Engineering
 The University of Tokyo
 7-3-1 Hongo, Bunkyo-ku, Tokio 113–8656 (Japan)
 E-Mail: mfujita@appchem.t.u-tokyo.ac.jp

Hintergrundinformationen zu diesem Beitrag sind im WWW unter http://dx.doi.org/10.1002/ange.201509963 zu finden.

Die Struktur konnte so gelöst werden, dass für die Kohlenstoffatome im Gerüst von Gast **2a** nur Standard-Restraints für die thermischen Auslenkungsparameter ("DELU") genutzt werden mussten, jedoch keine geometrischen Restraints (z. B. DFIX oder DANG), außer "SADI" für die äußeren zehn Kohlenstoffatome (siehe Abbildung S6). Zieht man in Betracht, dass **2a** ein nichtkovalent gebundener Gast ist, ist davon auszugehen, dass die Präzision der Röntgenstrukturanalyse ausreicht, um die Geometrie der Verbindung **2a** zumindest grob zu diskutieren.

Auffallend ist hierbei nun die starke Planarisierung des schalenförmigen Gastes **2a**, durch welche eine bessere Wechselwirkung mit dem Käfiginnenraum von **1** möglich ist (Abbildung 3). Die konvexe Fläche von **2a** interagiert hierbei

Abbildung 3. Struktur von 1·(2a·3) erhalten durch Einkristall-Röntgenstrukturanalyse: a) Seitenansicht, b) Aufsicht auf die Struktur von 1· (2a·3); c) Nahansicht der beiden Gäste 2a·3 (die thermischen Ellipsoide entsprechen 30% Aufenthaltswahrscheinlichkeit) sowie d) Nahansicht von Corannulen 2a im Käfiginneren. Das Kalottenmodell der Gäste ist jeweils im Hintergrund zu sehen. Wasserstoffatome des Wirts, Lösungsmittelmoleküle (H₂O) und Gegenionen (NO₃⁻) wurden aus Gründen der Übersichtlichkeit weggelassen.

anscheinend bevorzugt mit dem Triazin-Liganden 4 und weniger mit 3 im Käfig. Es ist davon auszugehen, dass der metallkoordinierte Ligand 4 ein besserer Elektronenakzeptor ist als 3.

Die Schalentiefe ("bowl depth", BD) von **2a** ist von 0.87 Å^[8] auf 0.56(10) Å reduziert nach Verkapselung, einhergehend mit einer leichten Verzerrung der Struktur. Die Krümmung nimmt dabei in Richtung des Randes leicht zu. Insgesamt erlaubt jedoch der etwas größere Käfig **1** eine gewisse Restkrümmung von **2a**. Um Einblick in die lokale Krümmung des Moleküls zu erhalten, wurde der π -Orbital-Achsenvektor (POAV)^[9] bestimmt und mit den Werten von freiem Corannulen **2a** verglichen (Abbildung 4).

Der POAV ist hierbei als Vektor definiert, der in gleichem Winkel ($\theta_{\sigma\pi}$) zu den drei Bindungen des konjugierten Koh-

Abbildung 4. Berechnete POAV und Schalentiefe (BD) für **2a** (frei und komplexiert), wie aus der Einkristall-Röntgenstrukturanalyse erhalten. Röntgenstrukturdaten von freiem **2a** wurden einer früheren Veröffentlichung entnommen.^[10] Die Schalentiefe ist definiert als Abstand zwischen dem Mittelpunkt des zentralen fünfgliedrigen Rings und dem Mittelpunkt der äußeren zehn Kohlenstoffatome.

lenstoffatoms steht. Wie aus der Analyse hervorgeht, nimmt die Krümmung lokal um bis zu 47 % ab, wenn Corannulen in Form von $1 \cdot (2a \cdot 3)$ vorliegt.

Corannulen sitzt jedoch nicht zentral oberhalb von 4, sondern leicht versetzt, um die Wechselwirkung zu maximieren (Abbildung 5). Deshalb ist das Zentrum leicht von der C_3 -Achse des Käfigs versetzt.

Abbildung 5. Ausschnitt aus der Molekülstruktur (erhalten durch Einkristall-Röntgenstrukturanalyse) von **1-(2a-3**), welche den Kontakt der konvexen Seite von **2a** (orange, oben), mit dem flachen elektronenarmen Triazin **4** (dunkelgrau, unten) zeigt. Der kleinste Abstand von gemessenen Wechselwirkungen beträgt etwa 3.11 Å.

Die Bildung eines Homodimers in Käfig 1 wurde ebenso beobachtet, wenn 2b analog als Templat für die Selbstorganisation genutzt wird. Ein Überschuss 2b wurde in einer wässrigen Lösung der Käfigkomponenten (4+5+6) suspendiert, um $1 \cdot (2b)_2$ zu erhalten. Das ¹H-NMR-Spektrum der filtrierten Lösung zeigt guten Umsatz zum Komplex $1 \cdot (2b)_2$, bei dem breite Resonanzen des C_1 -symmetrischen Corannulens 2b im Bereich von 5-6.5 ppm beobachtet werden (Abbildung S3-S5). Interessanterweise findet die Bildung des Homodimers nur sehr schlecht statt, wenn unsubstituiertes Corannulen 2a verwendet wird. Der Grund dafür liegt möglicherweise in der stärkeren Polarisierung von 2b, das dann sein Dipolmoment durch Bildung eines Dimers ausgleichen kann.^[11] Dieser stabilisierende Effekt kann in der dimeren Struktur von $(2a)_2$ nicht genutzt werden. Das Dimer ist möglicherweise durch die Abstoßung der beiden elektronenreichen π-Systeme eher destabilisiert (siehe die Hintergrundinformationen für DFT-Rechnungen und elektrostatische Potentialflächen von **2a** und **2b**, Abbildung S12).

Auch hier gelang es, Einkristalle von $1 \cdot (2b)_2$ für die Röntgenstrukturanalyse zu erhalten. Obwohl es einfach möglich war, den Käfig der Verbindung zu modellieren, zeigte Corannulen 2b verschiedene Fehlordnungen im Käfiginneren. Zwei Dimere wurden modelliert ((65%:35%) und (57%:43%)) und auch erfolgreich verfeinert, jedoch befinden sich noch immer nicht zugeordnete Elektronendichteaufkommen am Rand des Moleküls von 2b, die höchstwahrscheinlich auf Brom-Atome hindeuten. Es ist davon auszugehen, dass noch weitere Corannulen-Orientierungen mit geringerer Population existieren, die nicht modelliert werden konnten. Das gesamte Kohlenstoffgerüst musste des Weiteren mit geometrischen Restraints ("SADI") verfeinert werden, was eine genaue Diskussion der Struktur hinfällig macht. Jedoch zeigt die Struktur, dass aufgrund der Größe des Innenraums (7.0 Å; erhalten aus dem Abstand der beiden Flächen der Triazin-Liganden), die zwei enthaltenen Corannulen-Gäste 2b erheblich planarisiert werden müssen, um in das Käfiginnere zu passen ($4.3 \text{ Å} \times 2 = 8.6 \text{ Å}$; Abbildung S9). Dieser Beobachtung zufolge muss die Corannulen-Struktur im Käfig um mindestens ca. 0.8 Å abgeflacht sein (von 4.3 auf 3.5 Å).

Für eine Schalentiefe von 0.56 Å ergibt sich eine Aktivierungsenergie von 6.22 kcalmol⁻¹ nach DFT-Rechnungen (B3LYP 6-31G + (d,p); siehe Hintergrundinformationen für zusätzliche Details bezüglich der für DFT-Rechnungen, Tabelle S1) für die komplette Planarisierung von **2a**, die wesentlich geringer ist als die Barriere von 9.41 kcalmol⁻¹ für freies **2a** (BD: 0.87 Å). Die Inversionsbarrieren für **2a** in **1**-(**2a**·**3**) und **2b** in **1**·(**2b**)₂ sind daher maßgeblich reduziert.^[4,12]

Wegen der geringeren Schalentiefe ist davon auszugehen, dass die Inversion von **2b** in $1 \cdot (2b)_2$ extrem schnell bei Raumtemperatur abläuft (BD: 0.17 Å, Barriere etwa 1 kcal mol⁻¹) und daher nicht mittels NMR-Spektroskopie quantifiziert werden kann. Des Weiteren steht die Schaleninversion in indirekter Konkurrenz mit dem schnellen Austausch der Gäste (welcher aufgrund der breiten koaleszierten Signale des Käfigs **1** zu erwarten ist, Abbildung S5) und der Rotation der Gäste im Inneren des Käfigs.

Im Fall von **1**·(**2a·3**) ändert die Einlagerung des unsymmetrischen Donor-Akzeptor-Paares ebenso nicht die Symmetrie des Käfigs, was ein starker Indikator für einen schnellen Austausch zwischen den Gästen^[6,13] und Schaleninversion ist.

Die Festkörperstruktur von **1**-(**2a-3**) zeigt dicht gepackte Säulen entlang der kristallographischen *c*-Achse im Abstand von 3.31 Å, wobei das Wirt-Gast-System erkannt wird. Diese günstige Stapelungsstruktur könnte Ladungstransporteigenschaften induzieren (Abbildung S10).

Insgesamt konnten wir zeigen, dass die Verkapselung von Corannulen in einem synthetischen Rezeptor zu drastischen Änderungen seiner Molekülstruktur führt. Es ist davon auszugehen, dass die veränderte Geometrie von Corannulen die Eigenschaften der Verbindung beeinflusst. Die hier verwendeten Verbindungen – Corannulene,^[14] Naphthalindiimide^[15] und der Wirt^[16] – haben bereits in der Vergangenheit hohe Ladungsträgerbeweglichkeiten gezeigt. Wir präsentieren hier eine Möglichkeit, diese Komponenten diskret in einem molekularen Käfig in Lösung, und auch in kristalliner Form im Festkörper, zu kombinieren. Auf diesem Weg könnten maßgeschneiderte elektrisch leitfähige Materialien erhalten werden.

Experimentelles

Synthese der Komplexe 1·(2a·3) und 1·(2b)₂: Corannulen 2a 0.020 mmol) und Naphthalindiimid 3 (5.89 mg, (5.01 mg. 0.020 mmol), bzw. Monobromcorannulen 2b (8.23 mg, 0.025 mmol), Tris(4-pyridyl)-2,4,6-triazin 4 (6.25 mg, 0.020 mmol), 2,2',6,6'-Tetramethyl-4,4'-bipyridin 5 (6.36 mg, 0.030 mmol) und (en)Pd(NO₃)₂ 6 (17.40 mg, 0.060 mmol; en = Ethylendiamin) wurden in Wasser (1.0 mL) für 2 h bei 100°C gerührt. Die Mischung wurde filtriert, wonach ¹H-NMR-Spektren der leuchtend-orangen 1·(2a·3) bzw. gelben $1 \cdot (2b)_2$ Lösung jeweils den vollständigen Umsatz zu den Komplexen 1·(2a·3) und 1·(2b)₂ zeigten. Vollständige Charakterisierungsdaten der Komplexe können den Hintergrundinformationen entnommen werden. Einkristalle von 1·(2a·3) und 1·(2b)₂, streuten teilweise nur schwach aufgrund von Fehlordnungen des Wirtes. Kristalldaten für 1·(2a·3): Monokline Raumgruppe $P2_1/c$, T=100-(2) K, a = 18.705(4), b = 37.303(8), c = 27.809(6) Å, a = 90, $\beta = 98.28$ -(3), $\gamma = 90^{\circ}$, V = 19201(7) Å³, Z = 4, $\rho_{calcd} = 1.340 \text{ Mg m}^{-3}$, F(000) =7948, Reflexe gemessen/unabhängig 115113/39689 ($R_{int} = 0.0494$). Die Struktur wurde mithilfe von Direkten Methoden gelöst $(SHELXS-2013)^{[17]}$ und gegen F^2 mit der vollen Matrix verfeinert (Methode der kleinsten Fehlerquadrate; SHELXL-2014)^[18] unter Nutzung von 2130 Parameter. $R_1 = 0.1278 \ (I > 2\sigma(I)), \ \omega R_2 = 0.4342,$ GOF 1.177. Kristalldaten für $1 \cdot (2b)_2$: Monokline Raumgruppe $P2_1/c$, T = 100(2) K, a = 19.3300(3), b = 37.4023(4), c = 27.2068(3) Å, a = 90, $\beta = 101.228(1), \quad \gamma = 90^{\circ},$ $V = 19293.7(4) \text{ Å}^3$, Z = 4, $\rho_{\text{calcd}} =$ 1.330 Mg m⁻³, F(000) = 7776, Reflexe gemessen/unabhängig 106246/ 39619 ($R_{int} = 0.0399$). Die Struktur wurde mithilfe von Direkten Methoden gelöst (SHELXT-2014)^[19] und gegen F^2 mit der vollen Matrix verfeinert (Methode der kleinsten Fehlerquadrate; SHELXL-2014), 2284 Parameter. $R_1 = 0.1249 (I > 2\sigma(I)), \omega R_2 = 0.3818.$ GOF 1.351. CCDC-1433284 und -1433285 enthalten die ausführlichen kristallographischen Daten zu dieser Veröffentlichung. Diese Daten sind kostenlos beim Cambridge Crystallographic Data Centre erhältlich.

Danksagung

Diese Arbeit wurde durch KAKENHI, MEXT (24000009) unterstützt. B.M.S. dankt der Alexander von Humboldt-Stiftung und der JSPS (P-14744) für die Förderung seiner Forschungsarbeit.

Zitierweise: Angew. Chem. Int. Ed. 2016, 55, 1561–1564 Angew. Chem. 2016, 128, 1587–1590

- a) J. K. Klosterman, Y. Yamauchi, M. Fujita, *Chem. Soc. Rev.* 2009, *38*, 1714–1725; b) V. Maurizot, M. Yoshizawa, M. Kawano, M. Fujita, *Dalton Trans.* 2006, 2750–2756.
- [2] a) T. Osuga, T. Murase, K. Ono, Y. Yamauchi, M. Fujita, J. Am. Chem. Soc. 2010, 132, 15553–15555; b) T. Osuga, T. Murase, M. Fujita, Angew. Chem. Int. Ed. 2012, 51, 12199–12201; Angew. Chem. 2012, 124, 12365–12367.

Angewandte Chemie

- [3] a) Y.-T. Wu, J. S. Siegel, *Chem. Rev.* 2006, *106*, 4843–4867;
 b) V. M. Tsefrikas, L. T. Scott, *Chem. Rev.* 2006, *106*, 4868–4884;
 c) A. Sygula, *Eur. J. Org. Chem.* 2011, *2011*, 1611–1625; d) M. Stępień, *Synlett* 2013, *24*, 1316–1321.
- [4] a) M. Juríček, N. L. Strutt, J. C. Barnes, A. M. Butterfield, E. J. Dale, K. K. Baldridge, J. F. Stoddart, J. S. Siegel, *Nat. Chem.* 2014, 6, 222–228; siehe auch b) N. Kishi, Z. Li, Y. Sei, M. Akita, K. Yoza, J. S. Siegel, M. Yoshizawa, *Chem. Eur. J.* 2013, *19*, 6313–6320.
- [5] Dem ¹H-NMR-Spektrum zufolge steht die Bildung des erwünschten Komplexes 1-(2a)₂ in Konkurrenz zu der Bildung von M₆L₄ und der Komplexierung zweier Bis(2,6-lutidin)-Liganden 5 im Käfig.
- [6] T. Murase, K. Otsuka, M. Fujita, J. Am. Chem. Soc. 2010, 132, 7864–7865.
- [7] Da 2a und 3 in D₂O unlöslich sind, wurden die Vergleichsspektren in CDCl₃ aufgenommen.
- [8] a) J. C. Hanson, C. E. Nordman, *Acta Crystallogr. Sect. B* 1976, 32, 1147; b) Elektronenbeugung in der Gasphase: L. Hedberg, K. Hedberg, P.-C. Cheng, L. T. Scott, *J. Phys. Chem. A* 2000, *104*, 7689–7694.
- [9] a) R. C. Haddon, L. T. Scott, Pure Appl. Chem. 1986, 58, 137–142; b) R. C. Haddon, Acc. Chem. Res. 1988, 21, 243–249;
 c) R. C. Haddon, Science 1993, 261, 1545–1550; d) H.-C. Bai, Y. Zhu, N.-N. Yuan, Y.-Q. Ji, W.-Y. Qiao, Y.-H. Huang, Chin. J. Struct. Chem. 2013, 32, 695–703.
- [10] M. A. Petrukhina, K. W. Andreini, J. Mack, L. T. Scott, J. Org. Chem. 2005, 70, 5713–5716.
- [11] a) Y. Yamauchi, M. Yoshizawa, M. Akita, M. Fujita, Proc. Natl. Acad. Sci. USA 2009, 106, 10435–10437; b) Y. Yamauchi, M.

Yoshizawa, M. Akita, M. Fujita, J. Am. Chem. Soc. 2010, 132, 960–966.

- [12] a) L. T. Scott, M. M. Hashemi, M. S. Bratcher, J. Am. Chem. Soc. **1992**, 114, 1920–1921; b) T. J. Seiders, K. K. Baldridge, G. H. Grube, J. S. Siegel, J. Am. Chem. Soc. **2001**, 123, 517–525.
- [13] M. D. Pluth, K. N. Raymond, Chem. Soc. Rev. 2007, 36, 161-171.
- [14] a) B. M. Schmidt, S. Seki, B. Topolinski, K. Ohkubo, S. Fukuzumi, H. Sakurai, D. Lentz, *Angew. Chem. Int. Ed.* 2012, *51*, 11385–11388; *Angew. Chem.* 2012, *124*, 11548–11551; b) R.-Q. Lu, Y.-Q. Zheng, Y.-N. Zhou, X.-Y. Yan, T. Lei, K. Shi, Y. Zhou, J. Pei, L. Zoppi, K. K. Baldridge, J. S. Siegel, X.-Y. Cao, *J. Mater. Chem. A* 2014, *2*, 20515–20519.
- [15] S. V. Bhosale, C. H. Jani, S. V. Langford, *Chem. Soc. Rev.* 2008, 37, 331–342.
- [16] a) M. Kiguchi, T. Takahashi, Y. Takahashi, Y. Yamauchi, T. Murase, M. Fujita, T. Tada, S. Watanabe, *Angew. Chem. Int. Ed.* **2011**, *50*, 5708–5711; *Angew. Chem.* **2011**, *123*, 5826–5829; b) M. Kiguchi, J. Inatomi, Y. Takahashi, R. Tanaka, T. Osuga, T. Murase, M. Fujita, T. Tada, S. Watanabe, *Angew. Chem. Int. Ed.* **2013**, *52*, 6202–6205; *Angew. Chem.* **2013**, *125*, 6322–6325; c) S. Fujii, T. Tada, Y. Komoto, T. Osuga, T. Murase, M. Fujita, M. Kiguchi, *J. Am. Chem. Soc.* **2015**, *137*, 5939–5947.
- [17] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122.
- [18] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
- [19] G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.

Eingegangen am 26. Oktober 2015 Online veröffentlicht am 9. Dezember 2015